Geophysical Monitoring Stations for Deployable Networks

ROBEX Sensorworkshop
27/04/2017, Vienna
Marco Scharringerhausen, Lars Witte
Introduction

• Geophysical monitoring station for future lunar seismic surveys

• Adaption to other scientific disciplines is possible

• Developed within the frame of the Helmholtz alliance Robotic Exploration of Extreme Environments (ROBEX)

• Concept inherited by DLR’s Mobile Asteroid Surface Scout (MASCOT)
 – currently enroute to its target asteroid on-board JAXA’s Hayabusa 2 mission
Motivation (ALSEP)

Figure 2.11-24. Apollo Lunar Surface Experiment Package Deployed (Typical)
Motivation (ALSEP)

Figure 2.11-24. Apollo Lunar Surface Experiment Package Deployed (Typical)
Motivation (Apollo 17 Seismic Array)
MASCOT (Mobile Asteroid Surface Scout)

- 10 kg total mass
- 3 kg payload

- First concept studies 2009
- Launch Dec 2014
- Landing Sep/Oct 2018

P/L:
- Radiometer
- Microscope
- Wide-angle camera
- Magnetometer
Remote Unit

• Highly integrated instrument carrier
• 340mm x 240mm x 200mm, ~10 kg
• Intended lifetime is up to several weeks
• Modular design enables accommodation of different payload types and adaption to various deployment concepts
• ROBEX reference scenario: Seismometer
Remote Unit

1. Antennas
2. Docking interface to lander
3. Deployable solar array
4. Bus compartment
5. Instrument compartment with self-levelling seismometer
6. Grapple interface to a rover’s manipulator arm
Seismometer

- Sensor: Modified Lennartz LE3Dlite Mark III short period seismometer
 - Three geophones and the internal electronics board are re-used

- Two variants of seismometer integration realized for development and test purposes
 - Lightweight but fixed installation
 - Heavier, more complex but self-levelling housing
Reference Mission Scenario

Goal of the reference mission is to

• show that a robotically deployed, maintained and operated infrastructure (here: a seismic network (*) can produce high-quality and publishable data suitable to support meaningful scientific progress

• demonstrate interoperability and verification of mission critical technology required to operate in a hostile environment

(*) Mission set-up usable for different, additional/complementary science objectives as well. Some other options to be assessed during pre-tests, but excluded from field test
Reference Mission Scenario

- Medium sized lunar lander
 - Deliver four seismic stations and the roving unit
 - ~1400kg landed mass / ~160kg payload

- Lightweight Roving Unit
 - autonomously deploys the monitoring stations w/ ground segment involvement only at check gates to assure and confirm the correct build-up
Reference Mission Scenario (Passive)
Reference Mission Scenario (Active)

Deployment Support

Rover

Co-linear measurements spots, increasing distance from seismic source

Mission Control

Comm

Lander

Active Seismic Source

Comm
Field Tests (Mt Etna, Sicily, Sep 2016)

- Key elements deployed in Moon analogue field test
 - monitoring station
 - rover
 - control center
- Prep of end-to-end mission demonstration of the active and passive scenario (summer 2017)
- Autonomous rover navigation and vision-based recognition of seismic P/L carrier incl. robot arm manipulation and handling of seismometer stations
- 5-kg hammer and aluminum disk used as active source,
 - usually done in short distance seismic profiling.
- Benchmark measurements between the telecommanded seismic station and off-the-shelf Lennartz seismometers as reference.
Alternatives to Seismic Network

• **Deployment of a Low Frequency Array (LOFAR)**
 – Monitoring stations at network nodes are equipped with antenna dipoles instead of seismometer
 – Deployment modes and lander/rover and rover/stations interaction is identical

• **ISRU/sample return demonstration**
 – Sampling tools and cache required
 – some lander/rover interactions are identical or reverse to current implementation

• **Seismic network scenario chosen for reference mission, since it contains**
 – Network science (but less nodes than LOFAR)
 – Key interactions between elements (however no hand-overs back to lander)
Conclusions

• Seismic monitoring station as derivative of DLR’s MASCOT spacecraft concept.

• Demonstration of technologies necessary for follow-on missions and a science case for future geophysical monitoring missions.

• Application purpose is either as a stand-alone station or as part of a larger network. Deployment mode is in both cases by robotic means.

• Adaptation to other science cases possible.

• Intensive laboratory and field-testing in progress to verify and validate the involved technologies and the overall scientific approach.