Probing Marine Biogeochemistry with *in situ* Mass Spectrometry

Daniel Hoer

Harvard University
Underwater Mass Spectrometry and Marine Biogeochemistry

• Underwater Mass Spectrometry Primer
• Strengths, Weaknesses, and Field Experiences
• Overcoming Weaknesses: Technological Future Directions
• Future scientific applications
Why *in situ* Mass Spectrometry?

- Why *in situ*?

- Field-Tested Systems
 - *Technical University Hamburg - Harburg*
 - *USF - COT*
 - *MIT/WHOI*
 - *AWI*
 - *University of Hawaii*
 - *Harvard/MBARI*

- >25 publications since 1999
Underwater Mass Spectrometry Primer

Harvard ISMS System
Underwater Mass Spectrometry Primer

• Membrane Inlet Mass Spectrometry
 • Membrane Diffusion
 • Dissolved Volatiles

• Wide Range of Target Analytes
 • Analytes < 300 amu
 • Common Dissolved Gasses
 • Volatile Organic Compounds (VOCs)
Deploying an *in situ* MS

Photo: U. Washington Regional Scale Nodes
Deploying an *in situ* MS
Deploying an *in situ* MS

Harvard ISMS Sampling a Hydrothermal Chimney; Photo: ROV Quest
Strengths of the Harvard ISMS

• Strengths of the *in situ* MS (ISMS)
 • *Ease of use*
 • Simple Operation
 • Robust
 • Field Tested
 • *Open Access*
 • *Broad Applicability*
 • Environmental
 • Analytical
 • *Real-Time Data*
Field Experiences from Hydrothermal Vents

Diffuse Flows at the MAR: Photo: ROV Quest
Field Experiences from Hydrothermal Vents

Diffuse Flows at the MAR: Photo: ROV Quest
Field Experiences from Hydrothermal Vents

Diffuse Flows at the MAR: Photo: ROV Quest
Field Experiences from Hydrothermal Vents

Diffuse Flows at the MAR: Photo: ROV Quest
Mid Atlantic Ridge Deployment 2016

Hoer et al. unpublished data
Weaknesses of the Harvard ISMS

- Weaknesses of \textit{in situ} MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

\text{Hoer et al. unpublished data}
Weaknesses of the Harvard ISMS

• Weaknesses of *in situ* MS
 • Membrane variability
 • Response Time
 • Fluid flow rate
 • Power Consumption

Hoer et al. unpublished data
Weaknesses of the Harvard ISMS

- Weaknesses of *in situ* MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

Hoer et al. unpublished data
Weaknesses of the Harvard ISMS

- Weaknesses of in situ MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

Hoer et al. unpublished data
Overcoming Weaknesses

“Flux Integrator” in Lau Basin; Photo: ROV ROPOS
Future Directions
Long Term Deployments

- Power and Communications
 - *Cabled Observatories*

- Redundant Systems

- *in situ* Calibration
 - *Calibration Solutions*
 - *Metal Carbides*

‘El Gordo’; Photo: ROV ROPOS
Long Term Deployments: Cabled Observatory

Long-Term Deployment ISMS at the ‘El Gordo’ OOI RSN; Photos: ROV Jason
Autonomous Underwater Vehicle Deployments

- Payload Size
- Power Requirements
- Response Time

AUV Sentry; Photo: Ryan Siebert
Other Deployment Platforms

- Reactive Sampling Mooring
- Benthic Rovers
- Cast CTD Rosette from Ships

MBARI Benthic Rover; Photo: MBARI
Underwater Mass Spectrometry and Marine Biogeochemistry

• Strengths, Weaknesses, and Field Experiences
• Overcoming Weaknesses: Technological Future Directions
 • Careful Calibrations
 • Technological Updates and Adjustments
• Future scientific applications
 • (More) Long Term Deployments
 • (More) AUV Deployments
 • Different Vehicles
 • Reactive Sampling Platforms
Questions?