Probing Marine Biogeochemistry with *in situ* Mass Spectrometry

Daniel Hoer Harvard University

Underwater Mass Spectrometry and Marine Biogeochemistry

- Underwater Mass Spectrometry Primer
- Strengths, Weaknesses, and Field Experiences
- Overcoming Weaknesses: Technological Future Directions
- Future scientific applications

Why in situ Mass Spectrometry?

- Why in situ?
- Field-Tested Systems
 - Technical University Hamburg Harburg
 - USF COT
 - MIT/WHOI
 - AWI
 - University of Hawaii
 - Harvard/MBARI
- >25 publications since 1999

Photo: C. Martens (UNC-CH)

Underwater Mass Spectrometry Primer

Harvard ISMS System

Underwater Mass Spectrometry Primer

- Membrane Inlet Mass Spectrometry
 - Membrane Diffusion
 - Dissolved Volatiles
- Wide Range of Target Analytes
 - Analytes < 300 amu
 - Common Dissolved Gasses
 - Volatile Organic Compounds (VOCs)

Harvard ISMS Sample Inlet

Deploying an *in situ MS*

Photo: U. Washington Regional Scale Nodes

Deploying an *in situ MS*

Deploying an *in situ* MS

Harvard ISMS Sampling a Hydrothermal Chimney; Photo: ROV Quest

Strengths of the Harvard ISMS

- Strengths of the *in situ* MS (ISMS)
 - Ease of use
 - •Simple Operation
 - •Robust
 - •Field Tested
 - Open Access
 - Broad Applicability
 - •Environmental
 - •Analytical
 - Real-Time Data

Dive Time (GMT)

Dive Time (GMT)

Dive Time (GMT)

Dive Time (GMT)

Dive Time (GMT)

- Weaknesses of *in situ* MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

- Weaknesses of *in situ* MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

- Weaknesses of *in situ* MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

- Weaknesses of *in situ* MS
 - Membrane variability
 - Response Time
 - Fluid flow rate
 - Power Consumption

Overcoming Weaknesses

"Flux Integrator" in Lau Basin; Photo: ROV ROPOS

Overcoming Weaknesses

Monitor Instruments TETHYS MS; Photo: C. Martens

Future Directions

Long Term Deployments

- Power and Communications
 - Cabled Observatories
- Redundant Systems
- in situ Calibration
 - Calibration Solutions
 - Metal Carbides

'El Gordo'; Photo: ROV ROPOS

Long Term Deployments: Cabled Observatory

Long-Term Deployment ISMS at the 'El Gordo' OOI RSN; Photos: ROV Jason

Autonomous Underwater Vehicle Deployments

- Payload Size
- Power Requirements
- Response Time

AUV Sentry; Photo: Ryan Siebert

Other Deployment Platforms

- Reactive Sampling Mooring
- Benthic Rovers
- Cast CTD Rosette from Ships

MBARI Benthic Rover; Photo: MBARI

Underwater Mass Spectrometry and Marine Biogeochemistry

- Strengths, Weaknesses, and Field Experiences
- Overcoming Weaknesses: Technological Future Directions
 - Careful Calibrations
 - Technological Updates and Adjustments
- Future scientific applications
 - (More) Long Term Deployments
 - (More) AUV Deployments
 - Different Vehicles
 - Reactive Sampling Platforms

NASC

Questions?