# Miniaturized LIBS-Raman Spectrometer for in-situ Exploration

### S. Schröder, U. Böttger, F. Hanke, H.-W. Hübers

Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany

Wissen für Morgen



### LIBS and Raman Spectroscopy Science goal → geochemistry, mineralogy

#### LIBS (Laser-Induced Breakdown Spectroscopy)

radiation from a high-power pulsed laser is focused onto a sample
 → ablation of material, plasma production
 atomic transitions → Elemental composition

#### **Raman Spectroscopy**

nondestructive method monochromatic light (laser) is inelastically scattered  $\rightarrow$  energy of exciting photons is shifted. shift characteristic for the material

#### $\rightarrow$ Molecular structure, identification of minerals

#### Advantages for in-situ exploration:

combined: <u>complementary information</u> high sensitivity mineralogical characterization

**no sample preparation**, high spatial resolution, simultaneous multielement detection, fast analysis (secs to mins), removal of dust layers, **depths profiling**,...



# LIBS and Raman for Solar System Exploration

#### ChemCam (LIBS) on NASA's MSL

Remote (up to 7m), instrument <10 kg (telescope) (Maurice et al., 2012; Wiens et al., 2012)

#### → SuperCam on NASA's Mars 2020 mission

Remote **LIBS & Raman** (*Clegg et al., 2015; Maurice et al., 2015*) UV-Raman SHERLOC (*Beegle et al., 2015*)

#### Raman on ESA's Exomars Rover 2020

On-board Raman, crushed samples analyzed inside, 2.3 kg (e.g., Rull et al., 2014)

#### Payload under discussion for several mission proposals:

- ESA: Phobos lander (M5 call)
- Russia: Luna Resurs Program
- Japan: Phobos lander
- China: Chang'e moon lander









### **Research Topics**

### **Robotic exploration**

**Mars** (p = 7mbar,  $CO_2$  atmosphere)

- salts (sulfate, chlorides, perchlorates,...)
- Frozen salt-solutions (ices)
- Meteorites
- Organic materials  $\rightarrow$  Talk by M. Baqué

#### Low pressure environments





# **LIBS Spectroscopy - Science**

- elemental analysis
- simple, fast, direct
- sensitive to <u>all</u> elements, incl. H
- no sample preparation (self-cleaning, penetrating up to mm)
- standoff remote analysis (up to a few meters)



H in first martian ChemCam LIBS spectrum (Schröder et al., 2015)



# **LIBS Laboratory Set-up DLR**

- Simulation of planetary atmospheres:
- Martian analogue gas mixture (95.55 %vol. CO<sub>2</sub>, 2.7 %vol. N<sub>2</sub>, 1.6 %vol. Ar, and 0.15 %vol. O<sub>2</sub>)
- Pressure range  $1 \cdot 10^{-1}$  to  $1 \cdot 10^{3}$  mbar
- Temperature range 140 300 K, ±0.5 K
- Probe on xyz-stage for alignment
- Video surveillance







# LIBS Laboratory Set-up DLR

### **Exciting Laser:**

#### (1) Continuum Model Inlite

- Nd:YAG @ 1064 nm
- energy: up to 250 mJ

### (2) Neolase

- Nd:YLF @ 1053 nm
- energy: 0.1 5 mJ

(3) Prototype laser

- Nd:YLF @ 1053 nm
- energy: up to 1.8 mJ

Mini-LIBS set-up



#### **Mini-LIBS** laser



#### Laboratory set-up with two lasers



#### **Planetary simulation chamber**





# LIBS Laboratory Set-up DLR

### Spectrograph (Aryelle Butterfly LTB)

- wavelength coverage: 191-390 nm (UV), 280-900 nm (Vis/NIR)
- spectral resolution: 14-96 pm (λ/Δλ=14000/9400)
- wavelength calibration with a Hg spectral lamp
- detector: ICCD (Andor)





#### Ice & salts on Mars

- Chlorides and sulfates
- Hydrated salts
- Essential for Mars surface geochemistry
- Brines
- Astrobiology

#### **Investigated salts:**

 $CaCl_2$ ,  $CaSO_4$ , KCl,  $K_2SO_4$ ,  $MgCl_2$ ,  $MgSO_4$ , NaCl,  $Na_2SO_4$ ,  $Fe_2(SO_4)_3$ ,  $FeCl_3$ Perchlorates:  $Mg(ClO_4)_2$ ,  $NaClO_4$ 

Different eutectic behaviours and appearances (solidity, opacity, colour variations,...)



HRSC. crater near North Pole with water ice (ESA, DLR, FU Berlin, G. Neukum)



Phoenix landing site







### **LIBS spectra**

- Alkali & earth alkaline elements easy to identify
- Halogens such as Cl, S only weak emission
- **Multivariate Data Analysis (MVA)** allows for discrimination
- Principal component analysis (PCA)
- Soft independent modeling of class analogy (SIMCA)
- Partial least-squares discriminant analysis (PLS-DA)



S. Schröder et al., 2013



Ferric salts in frozen salt solution -  $Fe_2(SO_4)_3$  vs.  $FeCI_3$ 



#### Depth profiling (up to mm in soft matrix)

- Salt layer forms on the samples surface
- Emission line intensities of Na and Cl rapidly decrease
- O and H remain almost constant (but error increases due to plasma confinement)

→Subsurface can be probed
→Dust layers can be removed
→Weathering layers can be investigated



LIBS data from NaCl-frozen salt solution

S. Schröder et al., 2012

# **Raman Spectroscopy - Science**

- structural and chemical information about the system (molecules, crystals,..)
- complementary to IR and to LIBS (elemental composition)
- investigation of minerals, brines and biological samples and mixtures
- AND terrestrial contamination (e.g. propellant)
- fast full data acquisition in less than minutes
- non destructive





Raman spectra Hayabusa particles (Böttger et al., 2014)







# Raman: Vostok lake ice with inclusions

Collaboration with S. Bulat (FSBI Petersburg)

#### **Objective:**

Study inclusions (~mm) in ice with confocal Raman microscope

Special challenge: do not melt the ice with the laser!

#### **Results:**

Inclusion in original ice (never molten) contains anatase  $(TiO_2)$  and <u>amorphous carbon</u>



2014 - 5G-3 3607m accretion I ice sample



Sample cryo-holder with Vostok lake ice with inclusion



Böttger et al., submitted

# **Raman: Salts and frozen salt solutions**

Samples: binary system of H<sub>2</sub>O and different salts

- diatomic salts: NaCl, KCl, LiCl, Nal, NaBr
- polyatomic salts (non-sulfates): CaCl<sub>2</sub>·2H<sub>2</sub>O, MgCl<sub>2</sub>·6H<sub>2</sub>O, FeCl<sub>3</sub>·6H<sub>2</sub>O
- polyatomic salts (sulfates): Na<sub>2</sub>SO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>, CaSO<sub>4</sub>·2H<sub>2</sub>O, MgSO<sub>4</sub>·H<sub>2</sub>O, MgSO<sub>4</sub>·7H<sub>2</sub>O, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·xH<sub>2</sub>O

#### **Results:**

- most of the frozen salt solutions could be identified using Raman spectroscopy
- The combination of Raman spectroscopy, PCA and cluster analysis is an appropriate method for the detection, differentiation and identification of these frozen salt solutions



Hanke et al., in preparation



# **Summary: Salts and frozen salt solutions**

- Multivariate data analysis methods **are suitable** for LIBS and Raman analysis of frozen salt solutions
- Spectra of various salts pure, in soil, and as frozen salt solutions can be identified
- Inclusions can be identified
- Improvement can be obtained by:
  - averaging multiple spectra
  - preprocessing of the data (i.e. background subtraction)
  - analysis chains & local application of MVA
  - depends on samples



# **Summary: Salts and frozen salt solutions**

- Multivariate data analysis methods **are suitable** for LIBS and Raman analysis of frozen salt solutions
- Spectra of various salts pure, in soil, and as frozen salt solutions can be identified
- Inclusions can be identified
- Improvement can be obtained by:
  - averaging multiple spectra
  - preprocessing of the data (i.e. background subtraction)
  - analysis chains & local application of MVA
  - depends on samples



### **Robotic Mini-LIBS/Raman Spectrometer**



### **Robotic Mini-LIBS/Raman Spectrometer**

Integration of lasers into compact Sensorhead cooperation with FBH, Berlin (Raman-Laser) cooperation with LZH, LTB, vH&S: LIBS

Mass of laser head ~ 25g Total mass ~ 216g

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_8.jpeg)

# **Mini-Echelle Spektrometer**

### **Developed by ISAS**

- Dimensions 16 x 7 x 6 cm
- Range: 240 780 nm
- Resolution 0.05-0.1 nm
- Accuracy: 5 20 pm
- Image Area: 8 mm x 8 mm

### → Total Instrument ~ 3 kg

![](_page_19_Figure_9.jpeg)

![](_page_19_Picture_10.jpeg)

### Summary

- LIBS and Raman spectroscopy very suitable for solar system exploration
- Complementary information: elemental analysis and molecular structure
- Depth profiling up to mm
- Suitable for identification of salts, salt-ice matrices, and inclusions
- can be integrated into one compact instrument ~3 kg
- Sensorhead could be attached to mole or drill

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)